Abstract
The one of the most important issues in constructing light-harvesting photovoltaic (PV) systems with a charge storage element is its reliable and uninterrupted use in highly variable and weather-dependent conditions in everyday applications. Herein, we report the construction and applicability evaluation of a ready-to-use portable solar charger comprising a silicon solar cell and an enhanced energy hybrid supercapacitor using activated carbon electrodes and iodide-based aqueous electrolyte to stabilise the PV power under fluctuating light conditions. The optimised electrode/electrolyte combination of a supercapacitor was used for the construction of a 60 F/3 V module by a proper adjustment of the series and parallel connections between the CR2032 coin cells. The final photo-rechargeable device was tested as a potential supporting system for pulse electronic applications under various laboratory conditions (temperature of 15 and 25 °C, solar irradiation of 600 and 1000 W m−2).
Funder
Narodowe Centrum Badań i Rozwoju
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献