Optimal Energy Management of a Grid-Tied Solar PV-Battery Microgrid: A Reinforcement Learning Approach

Author:

Muriithi Grace,Chowdhury Sunetra

Abstract

In the near future, microgrids will become more prevalent as they play a critical role in integrating distributed renewable energy resources into the main grid. Nevertheless, renewable energy sources, such as solar and wind energy can be extremely volatile as they are weather dependent. These resources coupled with demand can lead to random variations on both the generation and load sides, thus complicating optimal energy management. In this article, a reinforcement learning approach has been proposed to deal with this non-stationary scenario, in which the energy management system (EMS) is modelled as a Markov decision process (MDP). A novel modification of the control problem has been presented that improves the use of energy stored in the battery such that the dynamic demand is not subjected to future high grid tariffs. A comprehensive reward function has also been developed which decreases infeasible action explorations thus improving the performance of the data-driven technique. A Q-learning algorithm is then proposed to minimize the operational cost of the microgrid under unknown future information. To assess the performance of the proposed EMS, a comparison study between a trading EMS model and a non-trading case is performed using a typical commercial load curve and PV profile over a 24-h horizon. Numerical simulation results indicate that the agent learns to select an optimized energy schedule that minimizes energy cost (cost of power purchased from the utility and battery wear cost) in all the studied cases. However, comparing the non-trading EMS to the trading EMS model operational costs, the latter one was found to decrease costs by 4.033% in summer season and 2.199% in winter season.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3