Comparative Evaluation of Non-Intrusive Load Monitoring Methods Using Relevant Features and Transfer Learning

Author:

Houidi SarraORCID,Fourer DominiqueORCID,Auger FrançoisORCID,Sethom Houda Ben Attia,Miègeville Laurence

Abstract

Non-Intrusive Load Monitoring (NILM) refers to the analysis of the aggregated current and voltage measurements of Home Electrical Appliances (HEAs) recorded by the house electrical panel. Such methods aim to identify each HEA for a better control of the energy consumption and for future smart grid applications. Here, we are interested in an event-based NILM pipeline, and particularly in the HEAs’ recognition step. This paper focuses on the selection of relevant and understandable features for efficiently discriminating distinct HEAs. Our contributions are manifold. First, we introduce a new publicly available annotated dataset of individual HEAs described by a large set of electrical features computed from current and voltage measurements in steady-state conditions. Second, we investigate through a comparative evaluation a large number of new methods resulting from the combination of different feature selection techniques with several classification algorithms. To this end, we also investigate an original feature selection method based on a deep neural network architecture. Then, through a machine learning framework, we study the benefits of these methods for improving Home Electrical Appliance (HEA) identification in a supervised classification scenario. Finally, we introduce new transfer learning results, which confirm the relevance and the robustness of the selected features learned from our proposed dataset when they are transferred to a larger dataset. As a result, the best investigated methods outperform the previous state-of-the-art results and reach a maximum recognition accuracy above 99% on the PLAID evaluation dataset.

Funder

Tunisian Ministry of Higher Education and Scientific Research

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-Intrusive Load Identification Based on Retrainable Siamese Network;Sensors;2024-04-17

2. Smart Homes, Smart Choices: Using Big Data to Boost Energy Efficiency and Environmental Sustainability;Electric Power Components and Systems;2024-04-17

3. A Generalizable Method for Practical Non-Intrusive Load Monitoring via Metric-Based Meta-Learning;IEEE Transactions on Smart Grid;2024-01

4. A Generalizability-Enhancing Method for Load Identification Based on Typical Sample Replay;2023 3rd International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI);2023-12-15

5. HeartDIS: A Generalizable End-to-End Energy Disaggregation Pipeline;Energies;2023-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3