Simulation and Comparison of Mathematical Models of PV Cells with Growing Levels of Complexity

Author:

Manuel Godinho Rodrigues Eduardo,Godina Radu,Marzband Mousa,Pouresmaeil EdrisORCID

Abstract

The amount of energy generated from a photovoltaic installation depends mainly on two factors—the temperature and solar irradiance. Numerous maximum power point tracking (MPPT) techniques have been developed for photovoltaic systems. The challenge is what method to employ in order to obtain optimum operating points (voltage and current) automatically at the maximum photovoltaic output power in most conditions. This paper is focused on the structural analysis of mathematical models of PV cells with growing levels of complexity. The main objective is to simulate and compare the characteristic current-voltage (I-V) and power-voltage (P-V) curves of equivalent circuits of the ideal PV cell model and, with one and with two diodes, that is, equivalent circuits with five and seven parameters. The contribution of each parameter is analyzed in the particular context of a given model and then generalized through comparison to a more complex model. In this study the numerical simulation of the models is used intensively and extensively. The approach utilized to model the equivalent circuits permits an adequate simulation of the photovoltaic array systems by considering the compromise between the complexity and accuracy. By utilizing the Newton–Raphson method the studied models are then employed through the use of Matlab/Simulink. Finally, this study concludes with an analysis and comparison of the evolution of maximum power observed in the models.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3