Assessment of the Power Output of a Two-Array Clustered WEC Farm Using a BEM Solver Coupling and a Wave-Propagation Model

Author:

Balitsky Philip,Verao Fernandez Gael,Stratigaki Vasiliki,Troch PeterORCID

Abstract

One of the key challenges in designing a Wave Energy Converter (WEC) farm is geometrical layout, as WECs hydrodynamically interact with one another. WEC positioning impacts both the power output of a given wave-energy project and any potential effects on the surrounding areas. The WEC farm developer must seek to optimize WEC positioning to maximize power output while minimizing capital cost and any potential deleterious effects on the surrounding area. A number of recent studies have shown that a potential solution is placing WECs in dense arrays of several WECs with space between individual arrays for navigation. This innovative arrangement can also be used to reduce mooring and cabling costs. In this paper, we apply a novel one-way coupling method between the NEMOH BEM model and the MILDwave wave-propagation model to investigate the influence of WEC array separation distance on the power output and the surrounding wave field between two densely packed WEC arrays in a farm. An iterative method of applying the presented one-way coupling to interacting WEC arrays is used to compute the wave field in a complete WEC farm and to calculate its power output. The notion of WEC array ‘independence’ in a farm from a hydrodynamic point of view is discussed. The farm is modeled for regular and irregular waves for a number of wave periods, wave incidence angles, and various WEC array separation distances. We found strong dependency of the power output on the wave period and the wave incidence angle for regular waves at short WEC array–array separation distances. For irregular wave operational conditions, a large majority of WEC array configurations within a WEC farm were found to be hydrodynamically ‘independent’.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3