Data-Driven Prediction of Load Curtailment in Incentive-Based Demand Response System

Author:

Kang JimyungORCID,Lee Soonwoo

Abstract

Demand response, in which energy customers reduce their energy consumption at the request of service providers, is spreading as a new technology. However, the amount of load curtailment from each customer is uncertain. This is because an energy customer can freely decide to reduce his energy consumption or not in the current liberalized energy market. Because this uncertainty can cause serious problems in a demand response system, it is clear that the amount of energy reduction should be predicted and managed. In this paper, a data-driven prediction method of load curtailment is proposed, considering two difficulties in the prediction. The first problem is that the data is very sparse. Each customer receives a request for load curtailment only a few times a year. Therefore, the k-nearest neighbor method, which requires a relatively small amount of data, is mainly used in our proposed method. The second difficulty is that the characteristic of each customer is so different that a single prediction method cannot cover all the customers. A prediction method that provides remarkable prediction performance for one customer may provide a poor performance for other customers. As a result, the proposed prediction method adopts a weighted ensemble model to apply different models for different customers. The confidence of each sub-model is defined and used as a weight in the ensemble. The prediction is fully based on the electricity consumption data and the history of demand response events without demanding any other additional internal information from each customer. In the experiment, real data obtained from demand response service providers verifies that the proposed framework is suitable for the prediction of each customer’s load curtailment.

Funder

Ministry of Science ICT and Future Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference38 articles.

1. The Power to Choose: Demand Response in Liberalised Electricity Markets;Agency,2003

2. A summary of demand response in electricity markets

3. Data-Driven Optimization of Incentive-based Demand Response System with Uncertain Responses of Customers

4. Korea Energy Market Operation Protocolhttp://www.kpx.or.kr

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3