ANFIS-Based Peak Power Shaving/Curtailment in Microgrids Including PV Units and BESSs

Author:

Nikolovski Srete,Reza Baghaee HamidORCID,Mlakić Dragan

Abstract

One of the most crucial and economically-beneficial tasks for energy customers is peak load curtailment. On account of the fast response of renewable energy resources (RERs) such as photovoltaic (PV) units and battery energy storage system (BESS), this task is closer to be efficiently implemented. Depends on the customer peak load demand and energy characteristics, the feasibility of this strategy may vary. When adaptive neuro-fuzzy inference system (ANFIS) is exploited for forecasting, it can provide many benefits to address the above-mentioned issues and facilitate its easy implementation, with short calculating time and re-trainability. This paper introduces a data-driven forecasting method based on fuzzy logic (FL) for optimized peak load reduction. First, the amount of energy generated by PV is forecasted using ANFIS which conducts output trend, and then, the BESS capacity is calculated according to the forecasted results. The trend of the load power is then decomposed in Cartesian plane into two parts, namely left and right from load peak, for the sake of searching for equal BESS capacity. Network switching sequence over consumption is provided by a fuzzy logic controller (FLC) considering BESS capacity and PV energy output. Finally, to prove the effectiveness of the proposed ANFIS-based peak power shaving/curtailment method, offline digital time-domain simulations have been performed on a test microgrid system using the data gathered from a real-life practical test microgrid system in the MATLAB/Simulink environment and the results have been experimentally verified by testing on a practical microgrid system with real-life data obtained from smart meters and also, compared with several previously-reported methods.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3