A Review and New Problems Discovery of Four Simple Decentralized Maximum Power Point Tracking Algorithms—Perturb and Observe, Incremental Conductance, Golden Section Search, and Newton’s Quadratic Interpolation

Author:

Andrean Victor,Chang Pei,Lian Kuo

Abstract

Maximum Power Point Tracking (MPPT) enables photovoltaic (PV) systems to extract as much solar energy as possible. Depending on which type of controller is used, PV systems can be classified as centralized MPPT (CMPPT) or decentralized MPPT (DMPPT). In substring-level systems, it is known that the energy yield of DMPPT can outweigh the power electronics cost. At the substring level, it is usually assumed that the PV curve exhibits a single peak, even under partial shading. Thus, the control algorithms for DMPPT are usually less complicated than those employed in CMPPT systems. This paper provides a comprehensive review of four simple DMPPT algorithms, which are perturb and observe (P&O), incremental conductance (INC), golden section search (GSS), and Newton’s quadratic interpolation (NQI). The comparison of these algorithms are done from the perspective of numerical analysis. Guidelines on how to set initial conditions and convergence criteria are thoroughly explained. This is of great interest to PV engineers when selecting algorithms for use in MPPT implementations. In addition, various problems that have never previously been identified before are highlighted and discussed. For instance, the problems of NQI trap is identified and methods on how to mitigate it are also discussed. All the algorithms are tested under various conditions including static, dynamic, and rapid changes of irradiance. Both simulation and experimental results indicate that P&O and INC are the best algorithms for DMPPT.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference38 articles.

1. Global Trends in Renewable Energy Investment 2017;McCrone,2017

2. Global trends in renewable energy investment 2017,2017

3. Novel and Fast Maximum Power Point Tracking for Photovoltaic Generation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3