Abstract
We present a method to predict the global horizontal irradiance (GHI) one hour ahead in one-minute resolution using Artificial Neural Networks (ANNs). A feed-forward neural network with Levenberg–Marquardt Backpropagation (LM-BP) was used and was trained with four years of data from all-sky images and measured global irradiance as input. The pictures were recorded by a hemispheric sky imager at the Institute of Meteorology and Climatology (IMuK) of the Leibniz Universität Hannover, Hannover, Germany (52.23° N, 09.42° E, and 50 m above sea level). The time series of the global horizontal irradiance was measured using a thermopile pyranometer at the same site. The new method was validated with a test dataset from the same source. The irradiance is predicted for the first 10–30 min very well; after this time, the length of which is dependent on the weather conditions, the agreement between predicted and observed irradiance is reasonable. Considering the limited range that the camera and the ANN can “see”, this is not surprising. When comparing the results to the persistence model, we observed that the forecast accuracy of the new model reduced both the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) of the one-hour prediction by approximately 40% compared to the reference persistence model under various weather conditions, which demonstrates the high capability of the algorithm, especially within the first minutes.
Funder
Gottfried Wilhelm Leibniz Universität Hannover
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference25 articles.
1. Improved Synthesis of Global Irradiance with One-Minute Resolution for PV System Simulations
2. Statistikenhttps://www.volker-quaschning.de/datserv/pv-welt/index.php
3. Bundesnetzagentur (2013)https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDatenInformationen/zahlenunddaten-node.html
4. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States
5. Vision-Based System for the Safe Operation of a Solar Power Tower Plant;Martínez,2002
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献