Influence of Elbow Angle on Erosion-Corrosion of 1018 Steel for Gas–Liquid–Solid Three Phase Flow

Author:

Khan Rehan,Ya Hamdan H.,Shah ImranORCID,Niazi Usama MuhammadORCID,Ahmed Bilal AnjumORCID,Irfan MuhammadORCID,Glowacz AdamORCID,Pilch ZbigniewORCID,Brumercik Frantisek,Azeem MohammadORCID,Alam Mohammad Azad,Ahmed TauseefORCID

Abstract

Erosive wear due to the fact of sand severely affects hydrocarbon production industries and, consequently, various sectors of the mineral processing industry. In this study, the effect of the elbow geometrical configuration on the erosive wear of carbon steel for silt–water–air flow conditions were investigated using material loss analysis, surface roughness analysis, and microscopic imaging technique. Experiments were performed under the plug flow conditions in a closed flow loop at standard atmospheric pressure. Water and air plug flow and the disperse phase was silt (silica sand) with a 2.5 wt % concentration, and a silt grain size of 70 µm was used for performing the tests. The experimental analysis showed that silt impact increases material disintegration up to 1.8 times with a change in the elbow configuration from 60° to 90° in plug flow conditions. The primary erosive wear mechanisms of the internal elbow surface were sliding, cutting, and pit propagation. The maximum silt particle impaction was located at the outer curvature in the 50° position in 60° elbows and the 80° position in 90° elbows in plug flow. The erosion rate decreased from 10.23 to 5.67 mm/year with a change in the elbow angle from 90° to 60°. Moreover, the microhardness on the Vickers scale increased from 168 to 199 in the 90° elbow and from 168 to 184 in the 60° elbow.

Funder

Deanship of Scientific Research, Najran University. Kingdom of Saudi Arabia, Research Collaboration funding program grant:

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3