Author:
Yeh Chun-Ping,Tsai Kun-Chao,Huang Jiunn-Yuan
Abstract
Stainless steels are used as canister materials for interim storage of spent fuel. Crevice corrosion has proved to be a safety concern of 304L stainless steel spent fuel canisters, when exposed to the saline environments of coastal sites. To study the effects of chloride concentration and test duration on the crevice corrosion behavior, and the effect of relative humidity on the initiation of discrete SCC cracks, a test program was conducted on the 304L steel specimens sprayed with synthetic sea water of 3.5 wt.%. The salt-deposited specimens, wrapped up with a crevice former to form a crevice configuration, were then exposed to an environment at 45 °C with a pre-set 45%, 55%, and 70% relative humidity (RH), for 400 h and 10,000 h, respectively. The surface features and crack morphology of the tested 304L stainless-steel specimens were examined by energy-dispersive spectrometry (EDS) and electron back scatter diffraction (EBSD). For the specimens deposited with a chloride concentration of 1 g/m2, no cracks were found in the corroded regions after 400-h exposure, whereas SCC cracks were observed with the specimens tested for 10,000 h at all three pre-set relative humidity. The specimens tested at the pre-set relative humidity 45% are characterized with discrete SCC cracks, but, on the other hand, those exposed to the environments of 55% and 70% relative humidity show SCC cracks of distinct features. From the results of 10,000-h tests, it is inferred that the chloride concentration threshold for SCC initiation of 304L stainless steel at 45 °C is between 0.1 g/m2 and 1 g/m2.
Subject
General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献