Impact of Carbon Foam Cell Sizes on the Microstructure and Properties of Pressure Infiltrated Magnesium Matrix Composites

Author:

Olszówka-Myalska AnitaORCID,Godzierz MarcinORCID,Myalski Jerzy

Abstract

Magnesium-based composites reinforced with open-celled carbon foams (Cof) of porosity approx. 97 vol % and three cell sizes (20, 45 and 100 ppi) were examined to characterize the influence of foam cell size on the microstructure and properties when pure magnesium and two cast alloys AZ31 and RZ5 were used as matrices. All composites were fabricated by pressure infiltration under the same conditions (temperature, pressure, time). For each matrix composition, two main factors due to the presence of the foam determined the composite microstructure—the efficiency of foam penetration and different conditions of metal crystallization. The lowest porosity was obtained when Cof45ppi was used and was independent of the applied matrix composition. The metallic component microhardness increased with a decrease in the carbon cell size as well as a decrease in the α-Mg grain size; both of those results should be taken into account during theoretical calculations. Compression and three-point bending strength measurements showed increases as the carbon cell size decreased, but reinforcing effectiveness relative to the matrix material depended on the metal matrix composition. At the fractured surface, different structural effects in the foam and matrix as well as at the interface were observed and depended on the foam geometry, metal composition and mechanical test type. In glassy carbon foam, those effects occurred as cracking across walls, fragmentation, and delamination, while in the matrix, shear bands and intergranular cracking were observed. On the delaminated foam surface, the microareas of a thin oxide layer were detected as well as dispersed phases characteristic for the applied matrix alloys. The accumulation of intermetallic phases was also observed on the metal matrix surface in microareas delaminated from the carbon foams. Mechanical property results indicated that among the tested, open-celled, carbon foams a 45 ppi porosity was the most useful for pressure infiltration and independent of magnesium-based matrix composition.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3