Magnetic and Tunable Sound Absorption Properties of an In-Situ Prepared Magnetorheological Foam

Author:

Muhazeli Noor SahirahORCID,Nordin Nur Azmah,Ubaidillah UbaidORCID,Mazlan Saiful Amri,Abdul Aziz Siti AishahORCID,Nazmi NurhazimahORCID,Yahya IwanORCID

Abstract

Conventional polyurethane foam has non-tunable sound absorption properties. Here, a magneto-induced foam, called magnetorheological (MR) foam, was fabricated with the feature of being able to tune sound absorption properties, primarily from the middle- to higher-frequency ranges. Three different samples of MR foams were fabricated in situ by varying the concentration of Carbonyl Iron Particles (CIPs) (0, 35, and 75 wt.%). The magnetization properties and tunable sound absorption characteristics were evaluated. From the magnetic saturation properties, the results showed very narrow and small coercivity of hysteresis loops relative to the soft magnetic properties of the CIPs. MR foam with 75 wt.% CIPs showed a higher magnetic saturation at 91.350 emu/g compared to MR foam with 35 wt.% CIPs at 63.896 emu/g. For tunable sound absorption testing, the effect of ‘shifting’ to higher frequency was also observed when the magnetic field was applied, which was ~10 Hz for MR foam with 35 wt.% CIPs and ~130 Hz for MR foam with 75 wt.% CIPs. As the latest evolution of semi-active noise control materials, the results from this study are valuable guidance for the advancement of MR-based devices.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3