Real-Time Speed Estimation for an Induction Motor: An Automated Tuning of an Extended Kalman Filter Using Voltage–Current Sensors

Author:

Miloud Ines1ORCID,Cauet Sebastien1ORCID,Etien Erik1ORCID,Salameh Jack P.2ORCID,Ungerer Alexandre2ORCID

Affiliation:

1. Université de Poitiers, ISAE-ENSMA Poitiers, LIAS, 86073 Poitiers, France

2. Chauvin Arnoux, 74940 Annecy, France

Abstract

This paper aims at achieving real-time optimal speed estimation for an induction motor using the Extended Kalman filter (EKF). Speed estimation is essential for fault diagnosis in Motor Current Signature Analysis (MCSA). The estimation accuracy is obtained by exploring the noise covariance matrices estimation of the EKF algorithm. The noise covariance matrices are determined using a modified subspace model identification approach. In order to reach this goal, this method compares an estimated model of a deterministic system, derived from available input–output datasets (using voltage–current sensors), with the discrete-time state-space representation used in the Kalman filter equations. This comparison leads to the determination of model uncertainties, which are subsequently represented as noise covariance matrices. Based on the fifth-order nonlinear model of the induction motor, the rotor speed is estimated with the optimized EKF algorithm, and the algorithm is tested experimentally.

Publisher

MDPI AG

Reference30 articles.

1. Rashid, M.H. (2017). Power Electronics Handbook, Butterworth-Heinemann.

2. Sensorless sliding-mode rotor speed observer of induction machines based on magnetizing current estimation;Vieira;IEEE Trans. Ind. Electron.,2013

3. Closed-loop MRAS speed observer for linear induction motor drives;Accetta;IEEE Trans. Ind. Appl.,2014

4. Speed sensorless vector control of induction motor using extended Kalman filter;Kim;IEEE Trans. Ind. Appl.,1994

5. Speed estimation of an induction motor drive using extended Kalman filter;Shi;Proceedings of the 2000 IEEE Power Engineering Society Winter Meeting—Conference Proceedings (Cat. No. 00CH37077),2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3