Design of Real-Time Extremum-Seeking Controller-Based Modelling for Optimizing MRR in Low Power EDM

Author:

Ismail Mohamed Rabik Mohamed,Thangaraj MuthuramalingamORCID,Karmiris-Obratański PanagiotisORCID,Papazoglou Emmanouil,Karkalos Nikolaos

Abstract

Electric discharge machining (EDM) is one of the non-conventional machining processes that supports machining for high-strength and wear-resistant materials. It is a challenging task to select the process parameters in real-time to maximize the material removal rate since real-time process trials are expensive and the EDM process is stochastic. For the ease of finding process parameters, a modelling of the EDM process is proposed. Due to the non-linear relationship between the material removal rate (MRR) and discharge time, a model-free adaptive extremum-seeking controller (ESC) is proposed in the feedback path of the EDM process for finding an optimal value of the discharge time at which the maximum material removal rate can be achieved. The results of the model show a performance that is closer to the actual process by choosing steel workpieces and copper electrodes. The proposed model offers a lower error rate when compared with actual experimental process data. When compared to manual searching for an optimal point, extreme seeking online searching performed better as per the experimental results. It was observed that the experimental validation also proved that the ESC can produce a large MRR by tracking the extremum control. The present study has been limited to only the MRR, but it is also possible to implement such algorithms for more than one response parameter optimization in future studies. In such cases the performance measures of the process could be further enhanced, which could be used for a real-time complex die- and mold-making process using EDM.

Funder

SRM Institute of Science and Technology, Kattankulathur, India

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3