Impact Resistance of a Fiber Metal Laminate Skin Bio-Inspired Composite Sandwich Panel with a Rubber and Foam Dual Core

Author:

Zhang Wenping,Li Ruonan,Yang Quanzhan,Fu Ying,Kong Xiangqing

Abstract

This paper reports the development of a novel bio-inspired composite sandwich panel (BCSP) with fiber metal laminate (FML) face sheets and a dual core to improve the low-velocity impact behavior based on the woodpecker’s head layout as a design template. The dynamic response of BCSP under impact load is simulated and analyzed by ABAQUS/Explicit software and compared with that of the composite sandwich panel (CSP) with a single foam core. The impact behavior of BCSP affected by these parameters, i.e., a different face sheet thickness, rubber core thickness and foam core height, was also reported. The results show that BCSP has superior impact resistance compared to CSP, with a lower damage area and smaller deformation, while carrying a higher impact load. Concurrently, BCSP is not highly restricted to any particular region when dealing with stress distributions. Compared to CSP, the bottom skin maximum stress value of BCSP is significantly reduced by 2.4–6.3 times at all considered impact energy levels. It is also found that the impact efficiency index of BCSP is 4.86 times higher than that of CSP under the same impact energy, indicating that the former can resist the impact load more effectively than the latter in terms of overall performance. Furthermore, the impact resistance of the BCSP improved with the increase in face sheet thickness and rubber core thickness. Additionally, the height of the foam core has a notable effect on the energy absorption, while it does not play a significant role in impact load. From an economic viewpoint, the height of the foam core retrofitted with 20 mm is reasonable. The results acquired from the current investigation can provide certain theoretical reference to the use of the bio-inspired composite sandwich panel in the engineering protection field.

Funder

Guangdong Major Project of Basic and Applied Basic Research

Publisher

MDPI AG

Subject

General Materials Science

Reference46 articles.

1. Mechanical properties and energy absorption capabilities of aluminium foam sandwich structure subjected to low-velocity impact;Zhao;Constr. Build. Mater.,2021

2. Hypervelocity impact on honeycomb structure reinforced with bi-layer ceramic/aluminum facesheets used for spacecraft shielding;Slimane;Mech. Adv. Mater. Struct.,2021

3. Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook;Sun;Thin Walled Struct.,2022

4. On the structural parameters of honeycomb-core sandwich panels against low-velocity impact;Sun;Compos. Part B Eng.,2021

5. Low velocity impact penetration response of foam core sandwich panels with face sheets;Wang;Int. J. Impact Eng.,2022

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3