Abstract
Recently, Kayyalha et al. (Phys. Rev. Lett., 2019, 122, 047003) reported on the anomalous enhancement of the self-field critical currents (Ic (sf, T)) at low temperatures in Nb/BiSbTeSe2-nanoribbon/Nb Josephson junctions. The enhancement was attributed to the low-energy Andreev-bound states arising from the winding of the electronic wave function around the circumference of the topological insulator BiSbTeSe2 nanoribbon. It should be noted that identical enhancement in Ic (sf, T) and in the upper critical field (Bc2 (T)) in approximately the same reduced temperatures, were reported by several research groups in atomically thin junctions based on a variety of Dirac-cone materials (DCM) earlier. The analysis shows that in all these S/DCM/S systems, the enhancement is due to a new superconducting band opening. Taking into account that several intrinsic superconductors also exhibit the effect of new superconducting band(s) opening when sample thickness becomes thinner than the out-of-plane coherence length (c (0)), we reaffirm our previous proposal that there is a new phenomenon of additional superconducting band(s) opening in atomically thin films.
Funder
Ministry of Education and Science of the Russian Federation
Act 211 Government of the Russian Federation
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献