Time Reversal Symmetry Breaking Superconductors: Sr2RuO4 and Beyond

Author:

Wysokiński Karol IzydorORCID

Abstract

Recent work done on the time reversal symmetry (TRS) breaking superconductors is reviewed in this paper. The special attention is paid to Sr 2 RuO 4 believed to be spin triplet chiral p-wave superconductor which break TRS and is expected to posses non-trivial topological properties. The family of TRS breaking superconductors is growing relatively fast, with many of its newly discovered members being non-centrosymmetric. However not only Sr 2 RuO 4 but also many other superconductors which possess center of inversion also break TRS. The TRS is often identified by means of the muon spin relaxation ( μ SR) and the Kerr effect. Both methods effectively measure the appearance of the spontaneous bulk magnetic field below superconducting transition temperature. This compound provides an example of the material whose many band, multi-condensate modeling has enjoyed a number of successes, but the full understanding has not been achieved yet. We discuss in some details the properties of the material. Among them is the Kerr effect and by understanding has resulted in the discovery of the novel mechanism of the phenomenon. The mechanism is universal and thus applicable to all systems with multi-orbital character of states at the Fermi energy.

Publisher

MDPI AG

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3