Thermodynamic, Dynamic, and Transport Properties of Quantum Spin Liquid in Herbertsmithite from an Experimental and Theoretical Point of View

Author:

Shaginyan Vasily R.ORCID,Msezane Alfred Z.,Amusia Miron Ya.ORCID,Clark John W.,Japaridze George S.,Stephanovich Vladimir A.,Leevik Yulya S.

Abstract

In our review, we focus on the quantum spin liquid (QSL), defining the thermodynamic, transport, and relaxation properties of geometrically frustrated magnet (insulators) represented by herbertsmithite ZnCu 3 ( OH ) 6 Cl 2 . The review mostly deals with an historical perspective of our theoretical contributions on this subject, based on the theory of fermion condensation closely related to the emergence (due to geometrical frustration) of dispersionless parts in the fermionic quasiparticle spectrum, so-called flat bands. QSL is a quantum state of matter having neither magnetic order nor gapped excitations even at zero temperature. QSL along with heavy fermion metals can form a new state of matter induced by the topological fermion condensation quantum phase transition. The observation of QSL in actual materials such as herbertsmithite is of fundamental significance both theoretically and technologically, as it could open a path to the creation of topologically protected states for quantum information processing and quantum computation. It is therefore of great importance to establish the presence of a gapless QSL state in one of the most prospective materials, herbertsmithite. In this respect, the interpretation of current theoretical and experimental studies of herbertsmithite are controversial in their implications. Based on published experimental data augmented by our theoretical analysis, we present evidence for the the existence of a QSL in the geometrically frustrated insulator herbertsmithite ZnCu 3 ( OH ) 6 Cl 2 , providing a strategy for unambiguous identification of such a state in other materials. To clarify the nature of QSL in herbertsmithite, we recommend measurements of heat transport, low-energy inelastic neutron scattering, and optical conductivity σ ¯ in ZnCu 3 ( OH ) 6 Cl 2 crystals subject to an external magnetic field at low temperatures. Our analysis of the behavior of σ ¯ in herbertsmithite justifies this set of measurements, which can provide a conclusive experimental demonstration of the nature of its spinon-composed quantum spin liquid. Theoretical study of the optical conductivity of herbertsmithite allows us to expose the physical mechanisms responsible for its temperature and magnetic field dependence. We also suggest that artificially or spontaneously introducing inhomogeneity at nanoscale into ZnCu 3 ( OH ) 6 Cl 2 can both stabilize its QSL and simplify its chemical preparation, and can provide for tests that elucidate the role of impurities. We make predictions of the results of specified measurements related to the dynamical, thermodynamic, and transport properties in the case of a gapless QSL.

Publisher

MDPI AG

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3