Polarization Analysis in Mössbauer Reflectometry with Synchrotron Mössbauer Source

Author:

Andreeva MarinaORCID,Baulin RomanORCID,Chumakov AleksandrORCID,Kiseleva Tatiyana,Rüffer Rudolf

Abstract

Polarization selection of the reflected radiation has been employed in Mössbauer reflectivity measurements with a synchrotron Mössbauer source (SMS). The polarization of resonantly scattered radiation differs from the polarization of an incident wave so the Mössbauer reflectivity contains a scattering component with 90° rotated polarization relative to the π-polarization of the SMS for some hyperfine transitions. We have shown that the selection of this rotated π→σ component from total reflectivity gives an unusual angular dependence of reflectivity characterized by a peak near the critical angle of the total external reflection. In the case of collinear antiferromagnetic interlayer ordering, the “magnetic” maxima on the reflectivity angular curve are formed practically only by radiation with this rotated polarization. The first experiment on Mössbauer reflectivity with a selection of the rotated polarization discovers the predicted peak near the critical angle. The measurement of the rotated π→σ polarization component in Mössbauer reflectivity spectra excludes the interference with non-resonant electronic scattering and simplifies the spectrum shape near the critical angle allowing for an improved data interpretation in the case of poorly resolved spectra. It is shown that the selected component of Mössbauer reflectivity with rotated polarization is characterized by enhanced surface sensitivity, determined by the “squared standing waves” depth dependence. Therefore, the new approach has interesting perspectives for investigations of surfaces, ultrathin layers and multilayers having complicated magnetic structures.

Publisher

MDPI AG

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3