Microstructure and Strength of Ti-6Al-4V Samples Additively Manufactured with TiC Heterogeneous Nucleation Site Particles

Author:

Watanabe Yoshimi1,Yamada Shintaro1,Chiba Tadachika1,Sato Hisashi1ORCID,Miura Seiji2ORCID,Abe Kenshiro3,Kato Tomotsugu3

Affiliation:

1. Department of Physical Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan

2. Division of Materials Science and Engineering, Hokkaido University, Sapporo 060-8628, Japan

3. Nabtesco Corporation, Tokyo 102-0093, Japan

Abstract

Our research aims to investigate the fabrication of additively manufactured (AMed) Ti-6Al-4V samples under reduced power with the addition of TiC heterogeneous nucleation site particles. For this aim, Ti-6Al-4V samples are fabricated with and without TiC heterogeneous nucleation site particles using an EOS M 290 machine under optimal parameters and reduced power conditions. The microstructure and tensile behavior of the produced samples were studied. In addition, a single-track test was performed to obtain a good understanding of the suppression of gas pores and balling formation with the addition of TiC heterogeneous nucleation site particles. It was found that the formation of gas pores and balling was suppressed with the addition of heterogeneous nucleation site particles within the metallic powder.

Funder

Light Metal Educational Foundation of Japan

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3