Determination of the Basic Geotechnical Parameters of Blast-Furnace Slag from the Kremnica Region

Author:

Bulko Roman1ORCID,Masarovičová Soňa1,Gago Filip1ORCID

Affiliation:

1. Faculty of Civil Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia

Abstract

A decisive aspect of site evaluation for construction is the presence of anthropogenic materials occurring in the geological environment. The geotechnical properties of blast-furnace slag were investigated as a potential substitute for aggregates in the construction industry. The basic geotechnical parameters of the slag were determined, which are critical for evaluating its stability, environmental impact, and usability in geotechnical construction. The research focused on monitoring the physical and mechanical properties of the two samples, and also included mineralogical analysis. The obtained results demonstrated that the slag belongs to the category of poorly graded gravel, G2/GP, and gravel with an admixture of fine-grained soil, G3/G-F. In addition, other important parameters, such as the water disintegration of the slag aggregate, the minimum and maximum bulk densities, the California bearing ratio (CBR), the oedometric modulus (Eoed), and shear tests (the angle of internal friction φ and cohesion c), were determined. The results from this paper provide important information for the proper management of blast-furnace slag so to minimize its environmental impact and achieve sustainability in the mining industry. At the same time, it enables a better understanding of the use of slag as a substitute for aggregates in geotechnical tasks. Despite its local importance in relation to the investigated case, the presented study has significant educational and scientific value for the construction sector, where it is necessary to evaluate anthropogenic activities and materials.

Funder

Operational Programme Integrated Infrastructure

European Regional Development Fund

Ministry of Education, Science, Research and Sport of the Slovak Republic

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3