A Review of Solar-Coupled Phase Change Materials in Buildings

Author:

Aziz Shahid12ORCID,Talha Tariq3ORCID,Mazhar Abdur Rehman3ORCID,Ali Junaid4ORCID,Jung Dong-Won5ORCID

Affiliation:

1. Department of Mechanical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Republic of Korea

2. Institute of Basic Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-Si 63243, Republic of Korea

3. College of Electrical & Mechanical Engineering, National University of Sciences & Technology, Islamabad 47301, Pakistan

4. Optoelectronics Research Laboratory, Department of Physics, COMSATS University Islamabad, Islamabad 45500, Pakistan

5. Faculty of Applied Energy System, Major of Mechanical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Republic of Korea

Abstract

Buildings use a significant percentage of the total energy consumed worldwide. Striving for energy conservation within buildings is of prime concern for researchers. Hence, scientists are aggressively exploring new energy storage and supply methods to reduce exorbitantly fluctuating energy demands and increase the share of renewable energy in building energy consumption. Solar systems that incorporate phase change materials (PCMs) for thermal storage have significant potential to serve in this context. These systems are not yet able to endure the significant energy demands, but they are being continually improved. The aim of this paper is to explore the existing solar PCM systems that are being studied or that are installed for use in indoor heating/cooling. As per the outcome of this systematic review, it has been observed that when coupled with solar thermal energy, the configuration of PCMs can either use passive or active techniques. Passive techniques are usually less efficient and more costly to implement in a building structure, resulting in active heat exchangers being widely implemented with better technical and economic results. At the same time, it has been observed that for most domestic buildings, organic PCMs with phase change temperatures of up to 42 °C and thermal conductivities of up to 0.56 W/m.K are most suitable for integration in solar thermal energy production. Hybrid systems are also commonly used for larger commercial buildings, in which the solar PCM system (SPCMS) provides a fraction of the total load. Additionally, the Stefan number is the most common technical parameter that is used to assess this performance, along with the effective thermal conductivity of the PCM after using enhancement techniques. The key economic indicator is annual savings per year, with most SPCMSs having a payback period of between 6 to 30 years. This review provides designers and researchers with key insights in terms of formulating a basis in the domain of coupling PCMs with solar thermal energy, especially within non-industrial buildings.

Funder

Brain Pool program of the Ministry of Science

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3