Asymmetric Plasmonic Moth-Eye Nanoarrays with Side Opening for Broadband Incident-Angle-Insensitive Antireflection and Absorption

Author:

Xia Rong123,Li Yang123ORCID,You Song123,Lu Chunhua123,Xu Wenbin4,Ni Yaru123

Affiliation:

1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China

2. Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China

3. Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China

4. Beijing Institute of Environmental Features Science and Technology on Optical Radiation Laboratory, Beijing 100854, China

Abstract

Plasmonic absorbers with broadband angle-insensitive antireflection have attracted intense interests because of its wide applications in optical devices. Hybrid surfaces with multiple different sub-wavelength array units can provide broadened antireflection, while many of these antireflective surfaces only work for specific angles and require high complexity of nanofabrication. Here, a plasmonic asymmetric nanostructure composed of the moth-eye dielectric nanoarray partially modified with the top Ag nanoshell providing a side opening for broadband incident-angle-insensitive antireflection and absorption, is rationally designed by nanoimprinting lithography and oblique angle deposition. This study illustrates that the plasmonic asymmetric nanostructure not only excites strong plasmonic resonance, but also induces more light entry into the dielectric nanocavity and then enhances the internal scattering, leading to optimized light localization. Hence, the asymmetric nanostructure can effectively enhance light confinement at different incident angles and exhibit better antireflection and the corresponding absorption performance than that of symmetric nanostructure over the visible wavelengths, especially suppressing at least 16.4% lower reflectance in the range of 645–800 nm at normal incidence.Moreover, the reflectance variance of asymmetric nanostructure with the incident angle changing from 5° to 60° is much smaller than that of symmetric nanostructure, making our approach relevant for various applications in photocatalysis, photothermal conversion, and so on.

Funder

General Project of Natural Science Foundation of Universities and Colleges in Jiangsu Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3