Investigating the Effects of Recycled Plastic as Fibers on Bending Behavior of Green Concrete Beams Exposed to Marine Environment

Author:

Shayanfar Mohsen Ali1ORCID,Shahrabadi Hamid1ORCID

Affiliation:

1. School of Civil Engineering, Iran University of Science and Technology, Tehran 16765-163, Iran

Abstract

Due to the noticeable production of greenhouse gases in cement production processes around the world, the use of supplementary cementitious materials (SCMs) like metakaolin/zeolite and the production of green concrete is inevitable, which leads to reducing the amount of environmental pollution and, specifically for maritime environments, improving the mechanical qualities of concrete. In addition, nowadays, the increasing use of plastic materials such as disposable glasses is considered a major problem in environmental pollution. Thus, using metakaolin/zeolite as an SCM and disposable glasses as fibers in concrete production may reduce environmental pollution and improve concrete’s properties. To do so, in this paper, the flexural behavior of green concrete beams containing metakaolin/zeolite at 10 and 20% as SCMs at 28, 90, and 180 days in the Oman Sea tidal environment was examined by studying the effects of utilizing 0.5 and 1% disposable-glass fibers in ring and strip forms. The findings demonstrate that ring (RFs) and strip fibers (SFs) in green concrete reduce a beam’s maximum load capacity (Pmax) by 31%, while RF and SF enhance green concrete beam flexural toughness by 8–20 times. Furthermore, the SF green concrete beams had 24% greater flexural toughness than RF beams at all ages. Finally, by improving the microstructure (by adding SCMs) and flexural behavior of marine concrete structures, in addition to increasing the load capacity and ductility of marine structures, the cracking and penetration of ions decreases; thus, the service life of the structures will increase.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3