Affiliation:
1. School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
2. CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012, China
3. State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
Abstract
The welding and construction processes for H-type thick-plate bridge steel involve complex multi-pass welding processes, which make it difficult to ensure its welding performance. Accordingly, it is crucial to explore the inherent correlations between the welding process parameters and welding quality, and apply them to welding robots, eliminating the instability in manual welding. In order to improve welding quality, the GMAW (gas metal arc welding) welding process parameters are simulated, using the Q345qD bridge steel flat joint model. Four welds with X-shaped grooves are designed to optimize the parameters of the welding current, welding voltage, and welding speed. The optimal welding process parameters are investigated through thermal–elastic–plastic simulation analysis and experimental verification. The results indicate that, when the welding current is set to 230 A, the welding voltage to 32 V, and the welding speed to 0.003 m/s, the maximum deformation of the welded plate is 0.52 mm, with a maximum welding residual stress of 345 MPa. Both the simulation results of multi-pass welding, and the experimental tests meet the welding requirements, as they show no excessive stress or strain. These parameters can be applied to building large steel-frame bridges using welding robots, improving the quality of welded joints.
Funder
Zhejiang Province Commonweal Projects of China
Open Research Program of CAS Key Laboratory of Solar Activity
Specialized Research Fund for State Key Laboratories
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献