Investigation of Timing Behavior and Jitter in a Smart Inertial Sensor Debugging Architecture

Author:

Gis Daniel,Büscher Nils,Haubelt Christian

Abstract

Due to upcoming higher integration levels of microprocessors, the market of inertial sensors has changed in the last few years. Smart inertial sensors are becoming more and more important. This type of sensor offers the benefit of implementing sensor-processing tasks directly on the sensor hardware. The software development on such sensors is quite challenging. In this article, we propose an approach for using prerecorded sensor data during the development process to test and evaluate the functionality and timing of the sensor firmware in a repeatable and reproducible way on the actual hardware. Our proposed Sensor-in-the-Loop architecture enables the developer to inject sensor data during the debugging process directly into the sensor hardware in real time. As the timing becomes more critical in future smart sensor applications, we investigate the timing behavior of our approach with respect to timing and jitter. The implemented approach can inject data of three 3-DOF sensors at 1.6 kHz. Furthermore, the jitter shown in our proposed sampling method is at least three times lower than using real sensor data. To prove the statistical significance of our experiments, we use a Gage R&R analysis, extended by the assessment of confidence intervals of our data.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3