Multi-Step Sequence Flood Forecasting Based on MSBP Model

Author:

Zhang Yue,Ren Juanhui,Wang Rui,Fang Feiteng,Zheng WenORCID

Abstract

Establishing a model predicting river flow can effectively reduce huge losses caused by floods. This paper proposes a multi-step time series forecasting model based on multiple input and multiple output strategies, and this model is applied to the flood forecasting process of a river basin in Shanxi, which effectively improves the engineering application value of the flood forecasting model based on deep learning. The experimental results show that after considering the seasonal characteristics of the river channel and screening the influencing factors, a simple neural network model can accurately predict the peak value, the peak time and flood trends. On this basis, we proposed the MSBP (Multi-step Back Propagation) model, which can accurately predict the flow trend of the river basin 20 h in advance, and the NSE (Nash Efficiency) is 0.89. The MSBP model can improve the reliability of flood forecasting and increase the internal interpretability of the model, which is of great significance for effectively improving the effect of flood forecasting.

Funder

Wen Zheng

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3