Affiliation:
1. College of Electrical Engineering, Xinjiang University, Urumqi 830047, China
2. Student Affairs Department, Changsha University of Technology, Changsha 410114, China
3. Nari Technology Co., Ltd., Nanjing 211106, China
Abstract
Using a high proportion of new energy is becoming the development trend of the modern power industry, with broad application prospects and potential threats to power system operation safety. This paper proposes a hybrid adaptive velocity update relaxation particle swarm optimization algorithm (AVURPSO) and recursive least square (RLS) method to quickly estimate the DSSR boundary using hyper-plane expression. Firstly, the operating point data in the high-dimension nodal injection space are analyzed using the AVURPSO algorithm to identify the key generators, equivalent search space, and critical points, which have relatively great effects on transient angle stability. The hyper-plane expression of the DSSR boundary, which matches the critical points best, is finally fitted by the RLS approach. Hence, the adopted algorithm is applied to rapidly approximate the DSSR boundary by hyper-plane expression in power injection spaces. Finally, the proposed algorithm is validated using a simulation case study on three wind farm regions of the actual Hami Power Grid of China using the DIgSILENT/Power Factory software. Consequently, the mentioned method effectively captures the security stability boundary of the new energy power system and realizes the three-dimensional visualization space of DSSR. By leveraging the DSSR, the state analysis can be conducted rapidly on several parameters, including security and stability assessments in relation to various energy supply capabilities. Meanwhile, these indices are calculated offline and applied online. The findings of this investigation confirm the efficacy and accuracy of the suggested modeling used in the analyzed system, offering technical assistance ensuring the stability of the new energy power system. The DSSR allows the rapid analysis of several parameters, including security and stability assessments with various energy supply capabilities.
Funder
National key research and development project sub project
National Natural Science Foundation project
Project supported by the Autonomous Region Natural Science Foundation
National Natural Science Foundation of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献