Study and Optimization Defect Layer in Powder Mixed Electrical Discharge Machining of Titanium Alloy

Author:

Rodic Dragan1ORCID,Gostimirovic Marin1,Sekulic Milenko1,Savkovic Borislav1ORCID,Aleksic Andjelko1

Affiliation:

1. Department of Production Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia

Abstract

Electrical discharge machining (EDM) has recently become very popular for processing titanium alloys, but surface quality is a major problem. During machining, a defect layer inevitably forms on the surface, which can have a negative impact on surface quality. One of the ways to reduce the defect layer is to add powder to the dielectric. However, it is not yet completely clear which powder and in what quantity it should be added to reduce the defect layer. In this sense, the present study aims to investigate the effects of machining parameters on the defect layer in powder-mixed electrical discharge machining of titanium alloys. The main goal is to achieve the minimum thickness of the defect layer by optimally adjusting the input parameters. Experimental studies were performed using the Taguchi orthogonal array L9, considering discharge current, pulse duration, duty cycle, and graphite powder concentration as input parameters. Based on the Taguchi and ANOVA analyses, the discharge current was found to have the greatest effect on the defect layer. In addition, analysis of variance revealed that pulse duration was the second influential parameter, followed by graphite powder and duty cycle. The minimum thickness of the defect layer is obtained at a discharge current of 1.5 A, a pulse duration of 30 µs, a duty cycle of 50%, and a graphite powder concentration of 12 g/L. The results obtained in this study provided answers to some of the unresolved research questions and confirmed the findings that the proposed method can be applied in the industry.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3