Lightweight Target Detection for Coal and Gangue Based on Improved Yolov5s

Author:

Cao Zhenguan1,Fang Liao1ORCID,Li Zhuoqin1,Li Jinbiao1

Affiliation:

1. School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China

Abstract

The detection of coal and gangue is an essential part of intelligent sorting. A lightweight coal and gangue detection algorithm based on You Only Look Once version 5s (Yolov5s) is proposed for the current coal and gangue target detection algorithm with the low accuracy of small target detection, high model complexity, and sizeable computational memory consumption. Firstly, we build a new convolutional block based on the Funnel Rectified Linear Unit (FReLU) activation function and apply it to the original Yolov5s network so that the model adaptively captures local contextual information of the image. Secondly, the neck of the original network is redesigned to improve the detection accuracy of small samples by adding a small target detection head to achieve multi-scale feature fusion. Next, some of the standard convolution modules in the original network are replaced with Depthwise Convolution (DWC) and Ghost Shuffle Convolution (GSC) modules to build a lightweight feature extraction network while ensuring the model detection accuracy. Finally, an efficient channel attention (ECA) module is embedded in the backbone of the lightweight network to facilitate accurate localization of the prediction region by improving the information interaction of the model with the channel features. In addition, the importance of each component is fully demonstrated by ablation experiments and visualization analysis comparison experiments. The experimental results show that the mean average precision (mAP) and the model size of our proposed model reach 0.985 and 4.9 M, respectively. The mAP is improved by 0.6%, and the number of parameters is reduced by 72.76% compared with the original Yolov5s network. The improved algorithm has higher localization and recognition accuracy while significantly reducing the number of floating-point calculations and of parameters, reducing the dependence on hardware, and providing a specific reference basis for deploying automated underground gangue sorting.

Funder

Natural Science Research Project of Anhui Educational Committee

Postgraduate Innovation Fund of Anhui University of Science and Technology

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference48 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3