Abstract
Membrane filtration has been widely used in water and wastewater treatment. However, this process is not very effective for the removal of refractory organic compounds (e.g., of pharmaceutical origin). Coupling membrane filtration with ozonation (or other Advanced Oxidation Methods) can enhance the degradation of these compounds and, subsequently, the incidence of membrane fouling (i.e., the major problem of membrane uses) would be also limited. Ozonation is an efficient oxidative process, although ozone is considered to be a rather selective oxidant agent and sometimes it presents quite low mineralization rates. An improvement of this advanced oxidation process is catalytic ozonation, which can decrease the by-product formation via the acceleration of hydroxyl radicals production. The hydroxyl radicals are unselective oxidative species, presenting high reaction constants with organic compounds. An efficient way to couple membrane filtration with catalytic ozonation is the deposition of an appropriate solid catalyst onto the membrane surface. However, it must be noted that only metal oxides have been used as catalysts in this process, while the membrane material can be of either polymeric or ceramic origin. The relevant studies regarding the application of polymeric membranes are rather scarce, because only a few polymeric materials can be ozone-resistant and the deposition of metal oxides on their surface presents several difficulties (e.g., affinity etc.). The respective literature about catalytic membrane ozonation is quite limited; however, some studies have been performed concerning membrane fouling and the degradation of micropollutants, which will be presented in this review. From the relevant results it seems that this hybrid process can be an efficient technology both for the reduction of fouling occurrence as well as of enhancement of micropollutant removal, when compared to the application of single filtration or ozonation.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献