Abstract
The carbonation of recycled aggregate was accelerated by sparging with supercritical carbon dioxide (scCO2) to reduce the amount of time needed for carbonation, which is necessary for the pH neutralization of recycled aggregate. To accelerate the carbonation process, pressurized scCO2 was sparged into two different types of recycled aggregates immersed in water for 1 h, followed by standstill for 2 h (in total, a 3 h treatment process). The reduction of the pH of the treated aggregates due to carbonation was investigated using batch extraction experiments. A continuous column extraction experiment for the scCO2-sparged recycled aggregate was also performed to identify the effect of pH reduction under the condition of non-equilibrium reaction. From XRD, SEM/EDS, and TG/DTA analyses, much of the portlandite in the recycled aggregates was consumed. In its place, calcite was created as a secondary mineral during only 3 h of treatment (1 h scCO2 sparging and 2 h stationing), indicating satisfactory carbonation of the aggregate. The results of the batch extraction experiments for both of the two recycled aggregate types also showed that the average pH of scCO2-sparged aggregate decreased from 12.0 to <9.8 (the tolerance limit for recycling). The pH of the eluent from the column packed with the scCO2-sparged aggregate also remained as <9.8, suggesting that a 1 h scCO2 sparging process is sufficient to carbonate waste concrete aggregate and to create an alternative construction material resource.
Funder
Korea Agency for Infrastructure Technology Advancement
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献