Abstract
The newly invented diamond anvil cell (DAC) in 1960, and the newly constructed Cornell High Energy Synchrotron Source (CHESS) in 1979 were a perfect match, as CHESS could provide such an intense X-ray beam with such extraordinary properties that a whole new approach to mineral physics research became possible. The very high intensity of the X-ray beam from CHESS made it possible to make real-time observations of crystal structures during phase transitions for the first time. For instance, the olivine-spinel transition, important for understanding deep focus earthquakes can be shown to take place first by the displacive shift of oxygen layers supporting shear stress as most likely earthquake trigger followed by the diffusion of the cations to their positions in the spinel structure. X-ray emission spectra of high-pressure, high-temperature samples also made it possible to determine phase compositions, as well as the structures of complex ions in solution.
Subject
Geology,Geotechnical Engineering and Engineering Geology