Abstract
A novel, integrated system is proposed for the cultivation and co-digestion of the invasive macrophyte water hyacinth (WH) with cow manure (CM) for the production of biogas for cooking in rural India. This study investigates the pre-treatment approaches and performs a techno-economic analysis of producing biogas in fixeddome digesters as a replacement for liquefied petroleum gas (LPG). Methodologies have been developed for the cultivation of WH collected from wild plants in the Indrayani River, Pune, India. Cultivation trials were performed in 350 litre tanks using water, which was nutrient fed with CM. Cultivation trials were performed over a 3 week period, and growth rates were determined by removing and weighing the biomass at regular time intervals. Cultivation results provided typical yields and growth rates of biomass, allowing predictions to be made for cultivation scaling. Samples of cultivated WH have been co-digested with CM at a 20:80 ratio in 200 L anaerobic digesters, allowing for the prediction of bio-methane yields from fixed-dome anaerobic digesters in real world conditions, which are commonly used in the rural locations of India. A calculator has been developed, allowing us to estimate the scaling requirements for the operation of an integrated biomass cultivation and anaerobic co-digestion unit to produce an equivalent amount of biogas to replace between one and three LPG cylinders per month. A techno-economic analysis of introducing WH into fixed-dome digesters in India demonstrated that the payback periods range from 9 years to under 1 year depending on the economic strategies. To replace between one and three LPG cylinders per month using the discussed feedstock ratio, the cultivation area of WH required to produce sufficient co-feedstock ranges within 10–55 m2.
Funder
Engineering & Physical Sciences Research Council
Biotechnology and Biological Sciences Research Council
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献