Combustion of Coal and Coal Slime in Steam-Air Environment and in Slurry Form

Author:

Dorokhov Vadim1,Kuznetsov Geniy1,Nyashina Galina1

Affiliation:

1. Heat and Mass Transfer Simulation Laboratory, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia

Abstract

One of the ways to minimize anthropogenic emissions from coal combustion is to replace conventional schemes used for the introduction of coal dust into the furnaces of power plants through the injection of water-containing fuels. In this research, the three most promising schemes for fuel combustion were implemented: (i) the simultaneous introduction of coal particles and water droplets into the combustion chamber; (ii) steam injection into the fuel particle combustion zone; and (iii) the introduction of coal–water slurries into the furnace. Three methods of supplying water to the combustion zone were evaluated using the multi-criteria decision-making technique. Experimental research was conducted to record a range of process characteristics: the time of the gas-phase and heterogeneous ignition, the time of complete combustion, minimum ignition temperatures, maximum combustion temperatures, the completeness of the fuel burnout and the concentrations of the main gaseous emissions. It has been found that the most favorable scheme for coal particle combustion in water-steam environments is to produce fuel slurries. The cumulative indicator integrating the energy and environmental characteristics is 7–47% higher for slurries than for the other examined schemes for burning coal particles and slime.

Funder

Tomsk Polytechnic University (TPU) development program Priority 2030

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3