Techno-Economic Comparison of Brayton Pumped Thermal Electricity Storage (PTES) Systems Based on Solid and Liquid Sensible Heat Storage

Author:

Frate Guido FrancescoORCID,Ferrari LorenzoORCID,Desideri UmbertoORCID

Abstract

To integrate large shares of renewable energy sources in electric grids, large-scale and long-duration (4–8+ h) electric energy storage technologies must be used. A promising storage technology of this kind is pumped thermal electricity storage based on Brayton cycles. The paper’s novel contribution is in the techno-economic comparison of two alternative configurations of such storage technology. Liquid-based and solid-based pumped thermal electricity storage were studied and compared from the techno-economic point of view. The cost impacts of the operating fluid (air, nitrogen, and argon), power rating, and nominal capacity was assessed. Air was the most suitable operating fluid for both technologies, simplifying the plant management and achieving cost reductions between 1% and 7% compared to argon, according to the considered configuration. Despite a more complex layout and expensive thermal storage materials, liquid-based systems resulted in being the cheapest, especially for large applications. This was due to the fact of their lower operating pressures, which reduce the cost of turbomachines and containers for thermal energy storage materials. The liquid-based systems achieved a cost per kWh that was 50% to 75% lower than for the solid-based systems. Instead, the cost per kW benefited the solid-based systems up to nominal power ratings of 50 MW, while, for larger power ratings, the power conversion apparatus of liquid-based systems was again cheaper. This was due to the impact of the turbomachines on the total cost. The machines can represent approximately 70% of the total cost for solid-based systems, while, for liquid-based, approximately 31%. Since the cost of turbomachines scales poorly with the size compared to other components, solid-based systems are less suitable for large applications.

Funder

Ministry of Universities and Research

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference56 articles.

1. (2021, April 06). European Parliament and the Council of the European Union Renewable Energy Directive. Available online: https://ec.europa.eu/energy/topics/renewable-energy/renewable-energy-directive/overview_en.

2. (2021, July 15). European Commission A European Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en#actions.

3. Energy storage systems in modern grids—Matrix of technologies and applications;Palizban;J. Energy Storage,2016

4. Is a 100% renewable European power system feasible by 2050?;Zappa;Appl. Energy,2019

5. Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications;Argyrou;Renew. Sustain. Energy Rev.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3