Will Capacity Mechanisms Conflict with Carbon Pricing?

Author:

Luo Yilun,Ahmadi EsmaeilORCID,McLellan Benjamin C.ORCID,Tezuka Tetsuo

Abstract

Climate change and related national mitigation targets make the decarbonization of the power sector an urgent need. The power sector faces the challenge of considering the design and interaction between emission reduction policies, which can sometimes counteract each other. This study proposes a framework that can be used to quantitatively study the qualitative link between carbon pricing and capacity pricing. The framework is validated through a case study in Hokkaido, Japan, and used to further investigate the interaction between the two policies through a System Dynamics simulation model and scenario design. The results indicate that a carbon price would promote the introduction of wind power, as well as the reduction in fossil fuels, while the capacity price will mitigate the boom-and-bust investment cycle and stabilize electricity prices. However, when the two policy-based prices act on the power system simultaneously, the advantages will be offset by each other. The existence of the capacity price partially offsets the emission reduction effect of the carbon price, and the carbon price with a lower floor will also indirectly squeeze the generation space of flexible power plants. In order to address these inefficiencies, this study proposed a capacity price focused on subsidizing flexible power plants and also coupled with a higher floor carbon price, which results in a consistent incentive. It also promotes the decommissioning of carbon-intensive base-load power plants and reduces CO2 emissions significantly.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference66 articles.

1. Global carbon budget 2018;Andrew;Earth Syst. Sci. Data,2018

2. Towards real-time verification of CO2 emissions;Peters;Nat. Clim. Chang.,2017

3. Rapid fuel switching from coal to natural gas through effective carbon pricing;Wilson;Nat. Energy,2018

4. The design of a carbon tax;Metcalf;Harv. Envtl. L. Rev.,2009

5. Why (ever) define markets?;Kaplow;Harv. Law Rev.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3