Abstract
The paper presents an experimental implementation of an optimal-based vibration control for a scaled wind turbine tower-nacelle structure. A laboratory model of the approximate power scale of 340 W, equipped with a nonlinear tuned vibration absorber (TVA), is analysed. For control purposes, a combined operation of a small-scale electric servo drive and a magnetorheological (MR) damper is used in the TVA system. Nonlinearities of both the electric drive and the MR damper are intrinsic parts of the adopted nonlinear control concept. The aim of the research is the simple-hardware real-time implementation and the experimental investigation of the simultaneous actuator and damper control, including the analysis of the influence of optimal control law parameters and quality function weights on the vibration attenuation efficiency and actuator energy demand. As a reference, an optimal-based, modified ground-hook control with the single goal of the primary structure deflection minimisation is used along with the passive system with zero MR damper current and idling electric actuator, proving the advantages of the proposed method. The regarded solutions guarantee 57% maximum structure deflection reduction concerning the passive TVA configuration, using an MR damper of 32 N maximum force and an electric drive of 12.5 N nominal force and 0.76 W nominal power. An interesting alternative is the optimal control concept tuned with regard to the actuator power minimisation—it provides 30% maximum structure deflection attenuation (concerning the passive TVA configuration) while using a passive damper of 3.3 N maximum force and an actuator of 0.17 W nominal power only. It makes evident the advantage of the properly tuned optimal control algorithm over the modified ground-hook law—it requires 51% less actuator energy than the latter parametrised to exhibit the same vibration attenuation properties.
Funder
AGH University of Science and Technology
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference61 articles.
1. Lyapunov-Based Control of A Bridge Using Magneto-rheological Fluid Dampers;Wang;J. Intell. Mater. Syst. Struct.,2002
2. Precise stiffness and damping emulation with MR dampers and its application to semi-active tuned mass dampers of Wolgograd Bridge;Weber;Smart Mater. Struct.,2014
3. Hybrid Structural Control using magnetorheological dampers for base isolated structures;Ali;Smart Mater. Struct.,2009
4. Esteki, K., Bagchi, A., and Sedaghati, R. (2011, January 2–4). Semi-Active Tuned Mass Damper for Seismic Applications. Proceedings of the Smart Materials, Structures & NDT in Aerospace, Montreal, Canada.
5. Review on vibration control in tall buildings: From the perspective of devices and applications;Kavyashree;Int. J. Dynam. Control,2020
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献