Research on Vibration Data-Driven Fault Diagnosis for Iron Core Looseness of Saturable Reactor in UHVDC Thyristor Valve Based on CVAE-GAN and Multimodal Feature Integrated CNN

Author:

Zhang Xiaolong,Wei Xiaoguang,Zheng Lin,Wang Chenghao,Wang Huafeng

Abstract

The imbalance of data samples and fluctuating operating conditions are the two main challenges faced by vibration data-driven fault diagnosis for the iron core looseness of saturable reactors in UHVDC thyristor valves. This paper proposes a vibration data-driven saturable reactor iron core looseness fault diagnosis strategy named CVG-MFICNN based on CVAE-GAN and MFICNN to overcome the two challenges. This strategy uses a novel 1-D CVAE-GAN model to produce generated samples and expand the training set based on imbalanced training samples. An MFICNN model structure is designed to allow the simultaneous processing of multimodal features such as the SST time-frequency spectrum, time-domain vibration sequence, frequency-domain power spectrum sequence, and time-domain statistics. Using these multimodal features and the MFICNN model, the hidden fault information in vibration data can be effectively mined. An experiment is conducted to collect vibration data of saturable reactors with different faults. Models based on the proposed strategy and other methods are trained and tested using the collected data. The comparison results show that the performance of the proposed CVG-MFICNN approach is significantly superior to that of single-feature CNNs, traditional machine learning methods, and classical image classification CNNs in the application of UHVDC thyristor valve saturable reactor iron core looseness fault diagnosis.

Funder

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference49 articles.

1. R&D and application of voltage sourced converter based high voltage direct current engineering technology in China;Tang;J. Mod. Power Syst. Clean Energy,2014

2. Kunpeng, Z., Junzheng, C., Wenmin, O., Baokui, S., Chong, G., and Hongzhou, L. (2017). Design of 6250A/±800kV UHVDC Converter Valve, IET.

3. Diagnosis of technical condition of power transformers based on the analysis of vibroacoustic signals measured in transient operating conditions;Borucki;IEEE Trans. Power Deliv.,2012

4. Predictive diagnosis of high-power transformer faults by networking vibration measuring nodes with integrated signal processing;Saponara;IEEE Trans. Instrum. Meas.,2016

5. Winding deformations detection in power transformers by tank vibrations monitoring;Burgos;Electr. Power Syst. Res.,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3