Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks

Author:

Wang Ruyan,Tang LiuweiORCID,Tang Tong

Abstract

Visual sensor networks (VSNs) can be widely used in multimedia, security monitoring, network camera, industrial detection, and other fields. However, with the development of new communication technology and the increase of the number of camera nodes in VSN, transmitting and compressing the huge amounts of video and image data generated by video and image sensors has become a major challenge. The next-generation video coding standard—versatile video coding (VVC), can effectively compress the visual data, but the higher compression rate is at the cost of heavy computational complexity. Therefore, it is vital to reduce the coding complexity for the VVC encoder to be used in VSNs. In this paper, we propose a sample adaptive offset (SAO) acceleration method by jointly considering the histogram of oriented gradient (HOG) features and the depth information for VVC, which reduces the computational complexity in VSNs. Specifically, first, the offset mode selection (select band offset (BO) mode or edge offset (EO) mode) is simplified by utilizing the partition depth of coding tree unit (CTU). Then, for EO mode, the directional pattern selection is simplified by using HOG features and support vector machine (SVM). Finally, experimental results show that the proposed method averagely saves 67.79% of SAO encoding time only with 0.52% BD-rate degradation compared to the state-of-the-art method in VVC reference software (VTM 5.0) for VSNs.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3