Differential Ground-Based Radar Interferometry for Slope and Civil Structures Monitoring: Two Case Studies of Landslide and Bridge

Author:

Hu Jiyuan,Guo JimingORCID,Xu Yi,Zhou Lv,Zhang ShuaiORCID,Fan Kunfei

Abstract

Ground-based radar interferometry, which can be specifically classified as ground-based synthetic aperture radar (GB-SAR) and ground-based real aperture radar (GB-RAR), was applied to monitor the Liusha Peninsula landslide and Baishazhou Yangtze River Bridge. The GB-SAR technique enabled us to obtain the daily displacement evolution of the landslide, with a maximum cumulative displacement of 20 mm in the 13-day observation period. The virtual reality-based panoramic technology (VRP) was introduced to illustrate the displacement evolutions intuitively and facilitate the following web-based panoramic image browsing. We applied GB-RAR to extract the operational modes of the large bridge and compared them with the global positioning system (GPS) measurement. Through full-scale test and time-frequency result analysis from two totally different monitoring methods, this paper emphasized the 3-D display potentiality by combining the GB-SAR results with VRP, and focused on the detection of multi-order resonance frequencies, as well as the configure improvement of ground-based radars in bridge health monitoring.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MIMO Radar;MIMO Communications - Fundamental Theory, Propagation Channels, and Antenna Systems;2023-12-20

2. Structural deformation monitoring during tunnel construction: a review;Journal of Civil Structural Health Monitoring;2023-11-29

3. The convenient method and application for monitoring the health of traffic sign poles based on mobile phone;Scientific Reports;2023-11-23

4. Non-contact measurement of vibration modes of large cable-stayed bridge under ambient conditions: a convenient way of condition monitoring of bridges;Journal of Civil Structural Health Monitoring;2023-11-06

5. Scanning Microwave Vibrometer: Full-Field Vibration Measurement via Microwave Sensing With Phase-Encoded Beam Scanning;IEEE Transactions on Instrumentation and Measurement;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3