Design and Construction of an ROV for Underwater Exploration

Author:

Aguirre-Castro Oscar AdrianORCID,Inzunza-González EverardoORCID,García-Guerrero Enrique EfrénORCID,Tlelo-Cuautle EstebanORCID,López-Bonilla Oscar RobertoORCID,Olguín-Tiznado Jesús EverardoORCID,Cárdenas-Valdez José RicardoORCID

Abstract

The design of a remotely operated vehicle (ROV) with a size of 18.41 cm × 29.50 cm × 33.50 cm, and a weight of 15.64 kg, is introduced herein. The main goal is to capture underwater video by remote control communication in real time via Ethernet protocol. The ROV moves under the six brushless motors governed through a smart PID controller (Proportional + Integral + Derivative) and by using pulse-wide modulation with short pulses of 1 μs to improve the stability of the position in relation to the translational, ascent or descent, and rotational movements on three axes to capture images of 800 × 640 pixels on a video graphic array standard. The motion control, 3D position, temperature sensing, and video capture are performed at the same time, exploiting the four cores of the Raspberry Pi 3, using the threading library for parallel computing. In such a way, experimental results show that the video capture stage can process up to 42 frames per second on a Raspberry Pi 3. The remote control of the ROV is executed under a graphical user interface developed in Python, which is suitable for different operating systems, such as GNU/Linux, Windows, Android, and OS X. The proposed ROV can reach up to 100 m underwater, thus solving the issue of divers who can only reach 30 m depth. In addition, the proposed ROV can be useful in underwater applications such as surveillance, operations, maintenance, and measurement.

Funder

TECNM

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3