Method of 3D Coating Accumulation Modeling Based on Inclined Spraying

Author:

Yu Danyang1ORCID,Su Chengzhi2,Wang Enguo1,Bao Haifeng1,Qu Fuheng3

Affiliation:

1. College of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China

2. College of Artificial Intelligence, Changchun University of Science and Technology, Changchun 130022, China

3. College of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China

Abstract

In the process of repairing the surface of products in aviation, aerospace, and other fields by spraying, accurate 3D cumulative-coating modeling is an important research issue in spraying-process simulation. The approach to this issue is a 3D cumulative-coating model based on inclined spraying. Firstly, an oblique spraying layer cumulative model was established, which could quickly collect the coating thickness distribution data of different spray distances. Secondly, 3D cumulative-coating modeling was conducted with the distance between the measuring point and the axis of the spray gun and the spraying distance between the measuring points as the input parameters, and the coating thickness of the measuring point as the output parameter. The experimental results show that the mean relative error of the cumulative model of the oblique spraying layer is less than 4.1% in the case of a 170~290 mm spraying distance and that the model is applicable in the range of −80~80 mm, indicating that the data on the oblique spraying coating proposed in this paper is accurate and fast. The accuracy of the 3D cumulative-coating model proposed in this paper is 1.2% and 21.5% higher than that of the two similar models, respectively. Therefore, the approach of 3D cumulative-coating modeling based on inclined distance spraying is discovered, demonstrating the advantages of fast and accurate modeling and enabling accurate 3D cumulative-coating modeling for spraying process simulation.

Funder

Defense Industrial Technology Development Program

Key Research and Development Program of the Ministry of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3