The Effect of Organic Trace Mineral Supplementation in the Form of Proteinates on Performance and Sustainability Parameters in Laying Hens: A Meta-Analysis

Author:

Byrne Laurann1ORCID,Ross Stephen2ORCID,Taylor-Pickard Jules1ORCID,Murphy Richard1ORCID

Affiliation:

1. Alltech Biotechnology Centre, Summerhill Road, A86 X006 Dunboyne, Ireland

2. Alltech E-CO2, Ryhall Road, Stamford PE9 1TZ, UK

Abstract

The effect of supplementing organic trace minerals (OTM), in the form of mineral proteinates (Bioplex® Cu, Fe, Mn, and Zn, Alltech Inc., Nicholasville, KY, USA), in the diets of laying hens was examined using Comprehensive Meta-Analysis (CMA) statistical software. The impact on production performance, egg quality traits, and sustainability parameters related to the carbon footprint of egg production was assessed. Data were obtained from 32 global studies, comprising 107 dietary assessments of 30,992 laying hens. Overall pooled effect size (raw mean difference) of production performance when dietary organic trace minerals were supplemented either in basal diets, partial replacement of inorganic trace minerals (ITM), or total replacement of ITM, indicated that use of Bioplex minerals resulted in 2.07% higher hen-day production (HDP), whilst feed conversion ratio (FCR) was lower by 51.28 g feed/kg egg and 22.82 g feed/dozen eggs, respectively. For egg quality traits, daily egg mass was 0.50 g/hen/day higher and egg weight was 0.48 g per egg greater when Bioplex minerals were incorporated in the diet. The mean difference in egg loss was −0.62%. Eggshell thickness was greater by 0.01 mm, and a higher eggshell strength of 0.14 kgf was observed. Eggshell weight was heavier by 0.20 g, eggshell percentage was higher by 0.15%, and Haugh unit was 1 point higher (0.89). We also carried out a meta-regression of the effects of the study factors (location, year of study, hen breed/strain, age of hens, number of hens, and study duration) on the overall pooled effect size of the production performance and egg quality traits in response to supplementary OTM inclusion, and it indicated that certain factors had a significant (p < 0.05) impact on the results. Finally, a life cycle assessment (LCA) model was selected to evaluate the impact of feeding organic trace mineral proteinates on the carbon footprint (feed and total emission intensities) of the egg production using the data generated from the meta-analysis. Results showed that the inclusion of OTM proteinates resulted in an average drop in feed and total emission intensities per kg eggs of 2.40% and 2.50%, respectively, for a low-global-warming-potential (GWP) diet and a drop of 2.40% and 2.48% for feed and total emissions, respectively, based on high-GWP diet. Based on the overall results, the inclusion of organic trace mineral proteinates in layer diets can benefit production performance and egg quality traits while contributing to a lower carbon footprint.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3