Affiliation:
1. College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
2. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
3. International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
Abstract
Guanidinoacetic acid (GAA) is an amino acid derivative, previously described in the skeletal muscle of vertebrates, that serves as an important regulator of cellular bioenergetics and has been widely used as a feed additive. Nevertheless, the effect of GAA on adipose tissue growth remains unclear. Here, we hypothesized that dietary GAA negatively affected adipose tissue development in lambs. Lambs were individually fed diets with (0.09%) or without GAA for 70 d ad libitum, and the subcutaneous adipose tissues were sampled for analysis. The results showed that dietary GAA supplementation decreased the girth rib (GR) value (p < 0.01) of lamb carcasses. Both real-time PCR and Western blot analysis suggested that dietary GAA inhibited the expression of adipogenic markers, including peroxisome proliferator-activated receptor γ (PPARγ, p < 0.05), CCAAT/enhancer-binding protein α (C/EBPα, p < 0.01) and sterol-regulatory-element-binding protein 1c (SREBP1C, p < 0.01) in subcutaneous adipose tissue. In vitro, GAA inhibited sheep stromal vascular fraction (SVF) cell proliferation, which was associated with downregulation of proliferating cell nuclear antigen (PCNA, p < 0.05), cyclin-dependent kinase 4 (CDK 4, p < 0.05) and cyclin D1 (p < 0.01). GAA suppressed adipogenesis of SVF cells. Furthermore, miRNA sequencing revealed that GAA affected the miRNA expression profile, and real-time PCR analysis confirmed that miR-133a expression in both subcutaneous adipose tissue and SVF cell was downregulated by GAA. Meanwhile, miR-133a promoted adipogenic differentiation of SVF cells by targeting Sirt1. miR-133a mimics alleviated the inhibitory effect of GAA on SVF cells’ adipogenic differentiation. In summary, GAA attenuated adipogenesis of sheep SVF cells, which might occur through miR-133a-modulated Sirt1 expression.
Funder
National Natural Science Foundation of China
Distinguished and Excellent Young Scholar Cultivation Project of Shanxi Agricultural University
International Joint Research Laboratory in the Universities of Jiangsu Province of China
Subject
General Veterinary,Animal Science and Zoology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献