Guanidinoacetic Acid Attenuates Adipogenesis through Regulation of miR-133a in Sheep

Author:

Zhao Jia-Min1,Li Fan-Qin-Yu1,Li Xv-Ying1,Jiao Dan-Rong1,Liu Xiang-Dong2,Lv Xiao-Yang3,Zhao Jun-Xing1

Affiliation:

1. College of Animal Science, Shanxi Agricultural University, Taigu 030801, China

2. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA

3. International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China

Abstract

Guanidinoacetic acid (GAA) is an amino acid derivative, previously described in the skeletal muscle of vertebrates, that serves as an important regulator of cellular bioenergetics and has been widely used as a feed additive. Nevertheless, the effect of GAA on adipose tissue growth remains unclear. Here, we hypothesized that dietary GAA negatively affected adipose tissue development in lambs. Lambs were individually fed diets with (0.09%) or without GAA for 70 d ad libitum, and the subcutaneous adipose tissues were sampled for analysis. The results showed that dietary GAA supplementation decreased the girth rib (GR) value (p < 0.01) of lamb carcasses. Both real-time PCR and Western blot analysis suggested that dietary GAA inhibited the expression of adipogenic markers, including peroxisome proliferator-activated receptor γ (PPARγ, p < 0.05), CCAAT/enhancer-binding protein α (C/EBPα, p < 0.01) and sterol-regulatory-element-binding protein 1c (SREBP1C, p < 0.01) in subcutaneous adipose tissue. In vitro, GAA inhibited sheep stromal vascular fraction (SVF) cell proliferation, which was associated with downregulation of proliferating cell nuclear antigen (PCNA, p < 0.05), cyclin-dependent kinase 4 (CDK 4, p < 0.05) and cyclin D1 (p < 0.01). GAA suppressed adipogenesis of SVF cells. Furthermore, miRNA sequencing revealed that GAA affected the miRNA expression profile, and real-time PCR analysis confirmed that miR-133a expression in both subcutaneous adipose tissue and SVF cell was downregulated by GAA. Meanwhile, miR-133a promoted adipogenic differentiation of SVF cells by targeting Sirt1. miR-133a mimics alleviated the inhibitory effect of GAA on SVF cells’ adipogenic differentiation. In summary, GAA attenuated adipogenesis of sheep SVF cells, which might occur through miR-133a-modulated Sirt1 expression.

Funder

National Natural Science Foundation of China

Distinguished and Excellent Young Scholar Cultivation Project of Shanxi Agricultural University

International Joint Research Laboratory in the Universities of Jiangsu Province of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3