Detection of Pig Movement and Aggression Using Deep Learning Approaches

Author:

Wei Jiacheng1,Tang Xi1,Liu Jinxiu1,Zhang Zhiyan1

Affiliation:

1. State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China

Abstract

Motion and aggressive behaviors in pigs provide important information for the study of social hierarchies in pigs and can be used as a selection indicator for pig health and aggression parameters. However, relying only on visual observation or surveillance video to record the number of aggressive acts is time-consuming, labor-intensive, and lasts for only a short period of time. Manual observation is too short compared to the growth cycle of pigs, and complete recording is impractical in large farms. In addition, due to the complex process of assessing the intensity of pig aggression, manual recording is highly influenced by human subjective vision. In order to efficiently record pig motion and aggressive behaviors as parameters for breeding selection and behavioral studies, the videos and pictures were collected from typical commercial farms, with each unit including 8~20 pigs in 7~25 m2 space; they were bred in stable social groups and a video was set up to record the whole day’s activities. We proposed a deep learning-based recognition method for detecting and recognizing the movement and aggressive behaviors of pigs by recording and annotating head-to-head tapping, head-to-body tapping, neck biting, body biting, and ear biting during fighting. The method uses an improved EMA-YOLOv8 model and a target tracking algorithm to assign a unique digital identity code to each pig, while efficiently recognizing and recording pig motion and aggressive behaviors and tracking them, thus providing statistics on the speed and duration of pig motion. On the test dataset, the average precision of the model was 96.4%, indicating that the model has high accuracy in detecting a pig’s identity and its fighting behaviors. The model detection results were highly correlated with the manual recording results (R2 of 0.9804 and 0.9856, respectively), indicating that the method has high accuracy and effectiveness. In summary, the method realized the detection and identification of motion duration and aggressive behavior of pigs under natural conditions, and provided reliable data and technical support for the study of the social hierarchy of pigs and the selection of pig health and aggression phenotypes.

Funder

National Key Technology in Agricultural Project

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3