Yak-Derived CXCL14 Activates the Pro-Inflammatory Response of Macrophages and Inhibits the Proliferation and Migration of HepG2

Author:

Li Biao12,Li Juan12,Wang Li12ORCID,Wei Yong3,Luo Xiaolin4,Guan Jiuqiang3,Zhang Xiangfei3

Affiliation:

1. Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China

2. Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China

3. Sichuan Animal Sciences Academy, Chengdu 610041, China

4. Sichuan Academy of Grassland Sciences, Chengdu 611731, China

Abstract

CXCL14 (C-X-C motif chemokine ligand 14) is an important chemokine involved in infection and immunity and plays an important role in a variety of immune-related diseases. The 446 bp cDNA sequence of the CXCL14 gene in yaks was obtained. Additionally, the prokaryotic expression vector of the CXCL14 protein with a molecular weight of 27 kDa was successfully constructed and expressed. The proliferation activities and migration abilities of spleen macrophages were significantly inhibited after treatment with the CXCL14 protein at different concentrations (1, 10 and 20 μg/mL) (p < 0.05). Furthermore, the expressions of pro-inflammatory cytokines interleukin 1 beta (IL-1β), interleukin 6 (IL6), interleukin 8 (IL8) and interferon-α (TNF-α) were significantly increased (p < 0.05), but the expression of anti-inflammatory factor interleukin 10 (IL10) was significantly decreased (p < 0.05). The contents of inflammatory factors in the supernatant of cells were detected using ELISA, and it was also found that the contents of TNF-α, IL6 and cytochrome c oxidase subunit II (COX2) were significantly increased under different CXCL14 protein concentrations (p < 0.05). Finally, the exogenous addition of CXCL14 inhibited the activity, clonal formation and migration of hepatoma cells (HepG2). Additionally, after HepG2 cells were treated with 20 μg/mL CXCL14 protein for 12 h, 24 h and 36 h, the expression levels of BCL2 homologous antagonist/killer (BAK) and the BCL2-associated X apoptosis regulator (BAX) were increased to varying degrees, while the expression levels of hypoxia-inducible factor 1 subunit alpha (HIF1A), the mechanistic target of rapamycin kinase (mTOR) and cyclin-dependent kinase 1 (CDK1) genes decreased compared to the control group. In conclusion, the CXCL14 protein can inhibit the proliferation and migration of HepG2 cells by inducing the expression of macrophage pro-inflammatory factors and activating apoptosis-related genes to exert innate immunity. These results are helpful to further study the function of the CXCL14 protein and provide research data for the innate immune mechanism of yaks under harsh plateau environments.

Funder

Research Funds of the Science and Technology Department of Sichuan Province

Southwest Minzu University Double World-Class Project

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3