Invited Review: Increasing Milk Yield and Negative Energy Balance: A Gordian Knot for Dairy Cows?

Author:

Martens Holger1ORCID

Affiliation:

1. Institute of Veterinary Physiology, Free University of Berlin, Oertzenweg 19b, 14163 Berlin, Germany

Abstract

The continued increase in milk production during the last century has not been accompanied by an adequate dry matter intake (DMI) by cows, which therefore experience a negative energy balance (NEB). NEB is low and of minor importance at low milk yield (MY), such as for the nutrition of one calf, and under these circumstances is considered “natural”. MY and low DMI around parturition are correlated and are the reason for the genetic correlation between increasing MY and increasing NEB up to 2000 MJ or more for 2–3 months postpartum in high-genetic-merit dairy cows. The extension and duration of NEB in high-producing cows cannot be judged as “natural” and are compensated by the mobilization of nutrients, particularly of fat. The released non-esterified fatty acids (NEFAs) overwhelm the metabolic capacity of the cow and lead to the ectopic deposition of NEFAs as triglycerides (TGs) in the liver. The subsequent lipidosis and the concomitant hampered liver functions cause subclinical and clinical ketosis, both of which are associated with “production diseases”, including oxidative and endoplasmatic stress, inflammation and immunosuppression. These metabolic alterations are regulated by homeorhesis, with the priority of the physiological function of milk production. The prioritization of one function, namely, milk yield, possibly results in restrictions in other physiological (health) functions under conditions of limited resources (NEB). The hormonal framework for this metabolic environment is the high concentration of growth hormone (GH), the low concentration of insulin in connection with GH-dependent insulin resistance and the low concentration of IGF-1, the so-called GH-IGF-1 axis. The fine tuning of the GH-IGF-1 axis is uncoupled because the expression of the growth hormone receptor (GHR-1A) in the liver is reduced with increasing MY. The uncoupled GH-IGF-1 axis is a serious impairment for the GH-dependent stimulation of gluconeogenesis in the liver with continued increased lipolysis in fat tissue. It facilitates the pathogenesis of lipidosis with ketosis and, secondarily, “production diseases”. Unfortunately, MY is still increasing at inadequate DMI with increasing NEB and elevated NEFA and beta–hydroxybutyric acid concentrations under conditions of low glucose, thereby adding health risks. The high incidences of diseases and of early culling and mortality in dairy cows are well documented and cause severe economic problems with a waste of resources and a challenge to the environment. Moreover, the growing public concerns about such production conditions in agriculture can no longer be ignored.

Funder

Bundesministerium für Bildung and Forschung within the Project Fugato

Margerete Markus Charity

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference139 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3