Anomaly Detection Methods in Autonomous Robotic Missions

Author:

Chirayil Nandakumar Shivoh1ORCID,Mitchell Daniel2ORCID,Erden Mustafa Suphi1,Flynn David2ORCID,Lim Theodore1

Affiliation:

1. School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK

2. James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK

Abstract

Since 2015, there has been an increase in articles on anomaly detection in robotic systems, reflecting its growing importance in improving the robustness and reliability of the increasingly utilized autonomous robots. This review paper investigates the literature on the detection of anomalies in Autonomous Robotic Missions (ARMs). It reveals different perspectives on anomaly and juxtaposition to fault detection. To reach a consensus, we infer a unified understanding of anomalies that encapsulate their various characteristics observed in ARMs and propose a classification of anomalies in terms of spatial, temporal, and spatiotemporal elements based on their fundamental features. Further, the paper discusses the implications of the proposed unified understanding and classification in ARMs and provides future directions. We envisage a study surrounding the specific use of the term anomaly, and methods for their detection could contribute to and accelerate the research and development of a universal anomaly detection system for ARMs.

Funder

Heriot Watt University Edinburgh

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3